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Summary 
A computational procedure is presented for the 

solution of frictionless contact problems of aircraft 
tires. The Space Shuttle orbiter nose-gear tire is 
modeled using a two-dimensional laminated aniso- 
tropic shell theory with the effects of variation in 
material and geometric parameters, transverse shear 
deformation, and geometric nonlinearities included. 
The contact conditions are incorporated into the for- 
mulation by using a perturbed Lagrangian approach 
with the fundamental unknowns consisting of the 
stress resultants, the generalized displacements, and 
the Lagrange multipliers associated with the contact 
conditions. The elemental arrays are obtained by us- 
ing a modified two-field, mixed variational principle. 

Numerical results are presented for the Space 
Shuttle nose-gear tire inflated and pressed against 
a flat plate. Comparison is made with experiments 
conducted at NASA Langley Research Center. The 
detailed information presented herein assists in gain- 
ing insight into the structural response of the tire. 
The numerical studies have demonstrated the high 
accuracy of the mixed formulation models and the 
effectiveness of the computational procedure, which 
combines both the geometrically nonlinear terms and 
the contact conditions in one iteration loop. 

Introduction 
Numerical modeling of the response characteris- 

tics of aircraft tires remains one of the most chal- 
lenging applications of computational structural me- 
chanics. There are several aspects of this problem 
that can lead to numerical difficulties and/or exces- 
sive computational expense. During normal aircraft 
operations, these tires are subjected to large dis- 
placements and temperature gradients. The tire is 
a composite structure composed of rubber, textile, 
and steel constituents that exhibits anisotropic and 
nonhomogeneous material properties. Furthermore, 
all the forces exerted on the tire associated with take- 
off and landing operations are generated through the 
tire-pavement interface; thus, any practical modeling 
tool must include a good contact algorithm. These 
facts and attendant difficulties emphasize the need 
to develop modeling strategies and analysis methods, 
including efficient contact algorithms, that are both 
powerful and economical. In recent years nonlinear 
analyses of static and dynamic problems involving 
contact have been the focus of intense research ac- 
tivities. Novel techniques that have emerged from 
these efforts include semianalytic finite-element mod- 
els for nonlinear analysis of shells of revolution (refs. 1 
and 2), reduced methods (refs. 3 and 4), and operator 
splitting techniques (refs. 5-7). Applications of these 

new techniques to tire modeling are summarized in 
references 4, 7, and 8. 

Scope of Investigation 
Current research in tire modeling and analysis 

at NASA Langley Research Center is aimed at de- 
veloping an accurate and efficient strategy for pre- 
dicting aircraft tire response. The focus of this 
paper is directed toward the developments in tire 
contact techniques. These contact algorithms are 
incorporated into a mixed formulation, two-field, 
two-dimensional finite-element code based on the 
moderate-rotation Sanders-Budiansky shell theory 
with the effects of transverse-shear deformation and 
laminated anisotropic material response included 
(refs. 9 and 10). The contact algorithm is based 
on the perturbed Lagrangian formulation (refs. 11 
and 12) and utilizes the preconditioned conjugate 
gradient (PCG) iteration procedure (refs. 13-15) to 
determine contact area and pressure distribution. To 
demonstrate the capabilities of the analysis tech- 
niques, numerical studies are presented for an in- 
flated Space Shuttle nose-gear tire statically loaded 
on a flat surface. The analysis assumes frictionless 
contact. Analytical results are compared with ex- 
perimental measurements. 

Notation 

C-ij i "'ij i Jij 

C44,C45,C55 

parameters defining geometry of tire 
cross section (see fig. 3) 

number of nodal points in contact 
in the element 

shell stiffness coefficients (i, j — 
1,2,6) 

transverse-shear stiffness coefficients 
of the tire (see eq. (A10)) 

tangential unit vectors in the 
meridional and circumferential 
directions 

ET0 
elastic modulus (see fig. 6) 

\F] flexibility matrix for an individual 
element 

Fc contact force 

Cf(Z,P)} vector defined in equations (7) 

{G(X)} vector of nonlinear terms (see 
eq. (3)) 

{G(X)} vector of nonlinear terms in equa- 
tions (4) and (5) 

{G(Z)} vector of nonlinear contributions to 
the global equations 



g current gap (measured in the 
direction of the normal to the 
contact surface) 

g0 initial gap 

{g0} vector of initial gaps for contact 
element 

{H} vector of stress-resultant parameters 

h total thickness of tire 

h nondimensional thickness of tire 
(see fig. 4) 

hk thickness of individual layers of two- 
dimensional shell model 

h0 total thickness of tire at £ = 0 (see 
fig-3) 

[K] global linear stiffness matrix 

Ms,Mg, MSQ   bending and twisting stress resul- 
tants (see fig. 1) 

{M(H, X)}     vector of nonlinear terms (see 
eq. (3)) 

m number of displacement nodes in 
the element 

N shape functions used for approxi- 
mating generalized displacements 
and Lagrange multipliers 

Ri,R2 

r0 

[S] 

[T] 

U 

u,v,w 

w 

{X} 

{X} 

principal radii of curvature in 
meridional and circumferential 
directions 

normal distance from tire axis to 
the reference surface 

= r at £ = 0 

strain-displacement matrix for an 
individual element 

meridional coordinate of tire (see 
fig-1) 

transformation matrix 

intensity of contact pressure (acting 
normal to contact surface) 

strain energy density (strain energy 
per unit area) 

displacement components of the 
reference surface of the tire in the 
meridional, circumferential, and 
normal directions (see fig. 1) 

normal displacement at £ = 9 = 0 
(see fig. 9) 

vector of nodal displacements in the 
shell coordinate system 

vector of nodal displacements in 
Cartesian coordinate system 

NS,N6,NS0 extensional stress resultants 
x,y,z Cartesian coordinate system 

n total number of degrees of freedom X3 coordinate normal to tire reference 
surface (see fig. 1) 

{P} normalized external load parameter 
{Z} global response vector 

{P} global vector of normalized external 
loads and initial gaps 

£ penalty parameter 

extensional strains of reference 
Pn nodal (contact) force normal to 

contact surface 
2e<s3;2£03 

surface of tire 

transverse-shear strains of tire 
P load parameter 9 circumferential (hoop) coordinate o 
Po intensity of inflation pressure tire (see fig. 1) 

Ps,P6,P intensity of external loading in 
coordinate directions (see fig. 1) 

9 orientation angle used in equa- 
tion (13) and table 5 

[Q],[R] elemental matrices associated with h orientation angle of tire cord, deg 

Qs,Qe 

the contact condition and the 
regularization term in the functional 

transverse-shear stress resultants 

Ks,Kß,2KsQ 

«1,«2 

bending strains of tire 

principal curvatures in meridional 
and circumferential directions of 

(see fig. 1) reference surface of shell model 

2 

load parameter Kl,0) K2,o principal curvatures at £ = 0 



Ä Lagrange multiplier, representing 
intensity of contact pressure acting 
normal to contact surface 

{A} vector of nodal values of Lagrange 
multipliers 

£ dimensionless coordinate along 
meridian (see fig. 4) 

II functional 

(f> rotation about the normal to tire 
reference surface 

<j)s, (f)g rotational components of reference 
surface of tire (see fig. 1) 

0(e) element domain 

Vc contact surface 

ds = d/ds 

de = d/de 
Superscripts: 

(e) individual elements 

i,j indices of shape functions for 
approximating Lagrange multipliers 

i! index of shape function for approx- 
imating generalized displacements 
(t' = l,m) 

r number of iteration cycles 

t matrix transposition 

Subscript: 

conv converged solution 

Mathematical Formulation 

The analytical formulation for frictionless contact 
of aircraft tires is based on a form of the moderate- 
rotation, Sanders-Budiansky shell theory with the ef- 
fects of large displacements and transverse-shear de- 
formation included. A mixed formulation is used 
in which the fundamental unknowns consist of five 
generalized displacements and eight stress resultants. 
The sign convention for the generalized displace- 
ments and stress resultants is given in figure 1. The 
fundamental equations of the shell theory used herein 
are given in references 9 and 10 and are summarized 
in appendix A. 

Contact Condition 

Figure 2 shows the characteristics of frictionless 
contact of a shell pressed against a rigid plate:  f2c 

refers to the contact region; g0 is the initial gap 
between the shell and the plate; g is the current gap 
(both g0 and g are measured normal to fic), and Tn 

is the normal traction on Qc. The contact condition 
can be expressed by the following inequalities and 
equation, which must be satisfied at each point on 
the contact surface J7C: 

9>0 

Tn<0 

(la) 

(lb) 

(lc) 

The first inequality (eq. (la)) represents the kine- 
matic condition of no penetration of the rigid plate 
(zero gap for the contact points). The second in- 
equality (eq. (lb)) is the static condition of com- 
pressive (or zero) normal tractions. The third equa- 
tion (eq. (lc)) states that there is zero work done by 
the contact stresses (i.e., the contact stresses exist at 
the points where the tire is in contact with the rigid 
plate). The following inequalities are henceforth re- 
ferred to as the inactive contact conditions: 

9>0 

Tn>0 

Governing Finite-Element Equations 

(Id) 

(le) 

The discrete equations governing the response of 
the tire are obtained by applying a modified form 
of the two-field Hellinger-Reissner mixed variational 
principle. The modification consists of augmenting 
the functional of that principle by two terms: the 
Lagrange multiplier associated with the nodal con- 
tact pressures and a regularization term which is 
quadratic in the Lagrange multipliers. For detailed 
discussion of the perturbed and the augmented La- 
grangian formulations, see references 11, 12, and 16. 

The modified functional has the following form: 

n = nHR + / 
Ja, 

A5 2e (*)' 
dÜ (2) 

where IIHR is the functional of the Hellinger-Reissner 
variational principle, A is the Lagrange multiplier, 
and e is the penalty parameter associated with the 
regularization term. The explicit forms of IIHR f°r 

axisymmetric shells are given in reference 4. Note 
that the addition of the regularization term amounts 
to approximating the rigid plate by continuously 
distributed springs with stiffness e, for sufficiently 
large e. As 1/e approaches zero, the continuous 
springs become the rigid plate. 



The shape functions used in approximating the 
generalized displacements and the Lagrange multipli- 
ers are selected to be the same and differ from those 
used in approximating the stress resultants. More- 
over, because of the nature of the functional II in 
equation (2), the continuity of neither the stress re- 
sultants nor the Lagrange multiplier is imposed at 
the interelement boundaries. 

The finite-element equations for each individual 
element can be cast in the following compact form: 

where 

-F 
St 

Q 
R Ql   f 

r G(X) 
+ <M(H,X) (3) 

where {H}, {X}, and {A} are the vectors of the 
stress-resultant parameters, nodal values of the gen- 
eralized displacements, and the nodal values of the 
Lagrange multipliers, respectively; [F] is the ma- 
trix of linear flexibility coefficients; [S] is the strain- 
displacement matrix; [Q] and [R] are the matrices 
associated with the contact condition and the regu- 
larization term in the functional (see appendix B); 
{G(X)} and {M(H,X)} are vectors of nonlinear 
terms; {g0} is the vector of initial gaps in the contact 
region Qc. A dot refers to a zero submatrix or subvec- 
tor; superscript (e) refers to individual elements; {P} 
is the normalized external load vector; p is a load pa- 
rameter. As the load is incremented, only the value 
of the load parameter p changes, and the normalized 
load vector {P} is constant. The formulas for the 
elemental arrays [F], [S], {G(X)}, {M(H,X)}, and 
{P} are given in reference 7. The formulas for the 
elemental arrays [Q] and [R] are given in appendix B. 

Note that the size of the coefficient matrices [R], 
[Q], and {g0} varies with the number of active con- 
tact conditions. The difficulty associated with an 
equation system whose size varies during the solution 
process was alleviated by allowing the Lagrange mul- 
tipliers to be discontinuous at interelement bound- 
aries and then eliminating them on the element level. 
If the stress-resultant parameters and Lagrange mul- 
tiplier parameters are eliminated from equation (3), 
then the following equations in terms of nodal dis- 
placements {X} are obtained: 

[Sm-'iSj-eMRr^Q^iX}^ 

l(e) + {G(X)}[e) +e[Q)[R]-1{g0}M -p{P}& = 0 

(4) 

(e) _ roi*rn-i {G(X)}{e> = [SflF]-1 {G(X)}W + {M(H,X)}& 

(5) 
and the vector {H} in {M(H,X)} is replaced by its 
expression in terms of {X}. 

To simplify the treatment of the contact condi- 
tions, the displacement components are transformed 
from shell coordinates (s, 6, x3) to the global Carte- 
sian coordinates (x,y,z) before assembly. The re- 
lations between the displacement vector in the shell 
coordinates, {X}(e\ and the corresponding vector in 
Cartesian coordinates, {X}(e\ can be written in the 
following compact form: 

{X}^ = [T]{X}^ (6) 

where [T] is the transformation matrix. The differ- 
ent arrays in the finite-element equations are trans- 
formed accordingly. The explicit form of the trans- 
formation relations is given in appendix C. 

Solution of Nonlinear Algebraic Equations 

Discrete equations governing the response of the 
tire are obtained by assembling the elemental contri- 
butions in equations (3) or (4) and can be written in 
the following form: 

{~f(Z,p)} = [K]{Z} + {G(Z)} -p{P} = 0     (7) 

where [K] is the global linear stiffness matrix of the 
tire; {G(Z)} is the vector of nonlinear contributions; 
{P} is the global vector of normalized external loads 
and initial gaps; and {Z} is the global response vector 
of the tire obtained by assembling the contributions 
from the subvectors {H}, {X}, and {A}. 

The nonlinear algebraic equations (eqs. (7)) are 
solved and the contact region and the contact 
pressures are determined by using an incremental- 
iterative technique (i.e., a predictor-corrector com- 
putation method) in which the response vector {Z} 
corresponding to a particular value of the load pa- 
rameter p is used to calculate a suitable approxima- 
tion (predictor) for {Z} at a different value of p. 
This approximation is then chosen as an initial es- 
timate for {Z} in a corrective iterative scheme such 
as the Newton-Raphson technique. In each Newton- 
Raphson iteration the contact conditions are checked 
and updated. 



Computational Procedure To Determine 
Contact Pressures 

The computational procedure used to determine 
the contact region and the contact pressures is out- 
lined in this section. Nonlinearities due to large 
displacements (moderate rotations) and the contact 
condition are combined into a single iteration loop. 
Reference 15 advocates a two-level (nested) iteration 
scheme. For the two-level scheme, the inner itera- 
tion loop accounts for the contact conditions associ- 
ated with the contact pressures, and the outer itera- 
tion loop uses the Newton-Raphson iteration scheme. 
Numerical experiments have demonstrated that for 
frictionless contact problems the two-level iterative 
scheme requires more iterations than the single-level 
scheme (see ref. 17). 

The solution of the governing discrete equations 
of the entire structure generates the nodal displace- 
ments, the stress-resultant parameters, and the val- 
ues of the Lagrange multipliers at the contact nodes. 
For each individual element in contact, the intensity 
of the contact pressure at a nodeLTn, is equal to the 
value of the Lagrange multiplier A at the same node. 
The contact pressures are also related to the nodal 
forces normal to the contact surface, P£, as follows: 

pi x n I NlN]düTl (8) 

where Nl are the shape functions used in approxi- 
mating the Lagrange multiplier and the generalized 
displacements, and Q(e) is the domain of the contact 
element. The range of both i and j in equation (8) 
is from 1 to the number of displacement nodes in 
the element. Other approaches for determining the 
contact pressures are discussed in reference 18. 

The computational procedure used in the present 
study is summarized as follows: 

Preprocessing and Initial Calculation Phases 

• Step 1. Model tire geometry, evaluate stiffness 
coefficients (ref. 19), and generate input data 
including transformation matrices. 

• Step 2. Select estimates for the penalty parame- 
ter and assume the contact status at the selected 
contact nodes. 

• Step 3. Generate linear element arrays. 

Solution Phase 

• Step 4. Solve inflation pressure case without con- 
tact using Newton-Raphson iteration scheme. 

• Step 5. Generate initial gap between the inflated 
tire configuration and the flat plate at designated 
contact nodes. 

• Begin displacement incrementation loop. 

• Begin combined contact and Newton-Raphson 
iteration loop. 

• Step 6. Generate nonlinear element arrays, elimi- 
nate the stress resultants and the Lagrange multi- 
pliers from the elemental equations, and assemble 
the left- and right-hand sides of the equations.    ' 

• Step 7. Solve equations (7) for the incremental 
displacements. 

• Step 8. Update the response vector for dis- 
placements, stress resultants, and the Lagrange 
multipliers: 

{ZW} = {ZW} + {AZM} (9) 

• Step 9. Check the contact status and modify the 
contact conditions at each node as needed: 

If g > 0, and X > 0, then the contact 

constraint is inactive 

If g < 0, then the constraint is active 

If the contact constraint is the same as that pre- 
viously assumed, then continue. Otherwise, add 
the active contact contribution to the list of nodes 
with active constraints or subtract the contact 
contribution from that list if the constraint is now 
inactive and return to step 6. 

• Step   10. Check   convergence   of  the   Newton- 
Raphson iterations: 

e = 
\{AZY{AZ}/{ZY{Z}]1/2 

n 
<  Tolerance 

(10) 
where e is the solution error, n is the total number 
of degrees of freedom in the model, and the tol- 
erance is prescribed. If convergence is achieved, 
then compute the contact forces at each contact 
node by 

N'XdÜ (11) pi 1 n 
Jn(e 

and continue. Otherwise return to step 6. 

• Step 11. If the prescribed displacement is greater 
than the specified maximum displacement, then 
stop. Otherwise, add additional displacement 
and return to step 6. 

The mixed-formulation finite elements used in 
this study have nine displacement nodes and four 



stress-resultant nodes and are designated as M9-4 
elements in table 1. 

Comments on Mixed Models, Perturbed 
Lagrangian Formulation, and 
Computational Procedure 

The following comments regarding the mixed 
models, the perturbed Lagrangian formulation, and 
the computational procedure used herein are in 
order: 

1. The nonlinear terms in the finite-element equa- 
tions of the mixed model (eqs. (3)) have a simpler 
form than those of the corresponding displace- 
ment model (eq. (5)). 

2. Equations (3) include both the Lagrange multi- 
plier approach and the penalty method as special 
cases, as follows: 

a. As the penalty parameter e approaches infin- 
ity, equations (3) reduce to those of the La- 
grange multiplier approach. 

b. When the Lagrange multiplier terms are elimi- 
nated in equations (3), the resulting equations 
are identical to the penalty method. 

3. The perturbed Lagrangian formulation allevi- 
ates two of the drawbacks associated with the 
Lagrange multiplier approach and the penalty 
method, namely: 

a. The regularization term in the functional re- 
sults in replacing one of the zero diagonal 
blocks in the discrete equations of the La- 
grange multiplier approach by the diagonal 
matrix [R]/e in equations (3). 

b. The contact condition is satisfied exactly 
by transforming the constrained problem to 
an unconstrained problem through the in- 
troduction of Lagrange multipliers (the term 
J^Xgdü, in eq. (2)) results in replacing the 
contact condition by the perturbed condition: 

-£[R]{\} + [Q}t{X}-{9o} = 0 (12) 

4. An important consideration in the perturbed La- 
grangian formulation and in any penalty formu- 
lation is the proper selection of the penalty pa- 
rameter e. With the foregoing mixed models, the 
penalty parameter can be chosen independently 
of the element size without adversely affecting the 
performance of the model.  The accuracy of the 

solution increases with increasing values of the 
penalty parameter. However, for very large val- 
ues of e, the equations become ill-conditioned and 
thus round-off errors increase. 

5. The elemental arrays [F], [S], {G(X)}, 
{M(H,X)}, and {P} are evaluated numerically 
using a Gauss-Legendre formula. The arrays [Q], 
[R], and {g0} are evaluated using a Newton-Cotes 
formula. In both cases the number of quadrature 
points used is the same as the number of displace- 
ment nodes in the element. This results in under- 
integrating the arrays [Q] and [R] and avoids the 
oscillatory behavior of the contact pressures that 
has been observed when the arrays are fully inte- 
grated. Note that the use of Newton-Cotes for- 
mula allows the contact pressures to be evaluated 
at the displacement nodes. 

Results and Discussion 

Numerical studies were performed to assess the 
accuracy of the two-dimensional shell tire model, the 
effectiveness of the proposed computational proce- 
dure, and the performance of the contact algorithm. 
To conduct these studies the 32 x 8.8, type VII, 16- 
ply rating, Space Shuttle orbiter nose-gear tire was 
modeled as a two-dimensional, laminated shell with 
variable thickness and variable stiffness characteris- 
tics. The outer surface of the tire was taken to be the 
reference surface of the shell model. The geometric 
characteristics of the tire are given in figure 3. The 
tire carcass is constructed of 10 lamina of nylon and 
rubber with an additional reinforcing ply beneath the 
tire tread as shown in figure 4. The tire has a three- 
groove tread pattern, but in this investigation the 
tire model assumes a smooth tread pattern instead. 
The rated load for the tire is 15 000 lb at an inflation 
pressure of 320 psi. All experiments were conducted 
at an inflation pressure of 300 psi. The following sec- 
tions describe the experimental measurements used 
to establish the tire geometry and to define the global 
elastic response of the tire to inflation and static ver- 
tical loading conditions. These sections also present 
an evaluation of the tire stiffness characteristics and 
numerical results with some limited comparisons be- 
tween the analytical predictions and the experimen- 
tal measurements. 

Modeling of Tire Geometry 

A Space Shuttle nose-gear tire was cut into sec- 
tions and used to obtain accurate measurements of 
the cross-sectional profile of the uninflated tire. A 
smoothed spline under tension was used to fit a 
curve through the measured coordinates of the cross- 
sectional profile in a least-squares sense (see refs. 20 

6 



and 21). Because of symmetry, only half the cross 
section was modeled. A smooth variation of the 
second derivative, ^-f, was achieved by adjusting 
the standard deviations of the measured profile at 
the data points. For a detailed description of spline 
smoothing techniques, see references 21 to 23. 

The spline function with the tension function fac- 
tor set equal to 0.1 and slope continuity enforced at 
both ends of the curves was used to generate addi- 
tional points along the meridian of the tire. The in- 
terpolation procedure is outlined in reference 20, and 
the resulting geometric characteristics of the tire are 
presented in figure 5. The thickness of the tire car- 
cass at the nodal points of the finite-element model 
was computed along the normal vector to the tire 
reference (outer) surface by locating the points of in- 
tersection of the normal vectors with the inner sur- 
face of the tire carcass. To facilitate these compu- 
tations the tire inner surface was approximated by a 
set of third-degree polynomials. 

Sketch 1. Arrangement of photogrammetry targets on Space 
Shuttle nose-gear tire. 

Measurements of Inflated Cross-Sectional 
Profile and Vertical Load-Deflection 
Response 

Close-range   photogrammetry   techniques   were 
used to define the inflated profile of the Space Shuttle 

orbiter nose-gear tire. To facilitate these measure- 
ments, 209 circular, reflective targets were attached 
to the tire as shown in sketch 1. The targets were 
aligned along 19 meridional lines of the tire sidewall 
and a video camera was used to record the target po- 
sitions from 10 camera locations. A stereo photog- 
raphy triangulation technique (refs. 24 and 25) was 
used to define the location of each target in a global 
coordinate system from these video images. The rms 
measurement accuracies were found to be 1.3 mils, 
2.9 mils, and 1.5 mils in the x-, y-, and z-coordinate 
directions, respectively. 

Static vertical load-deflection tests were con- 
ducted on the inflated Space Shuttle nose-gear tire to 
obtain a global measure of the tire elastic response. 
For these tests the tire was slowly lowered onto a flat 
plate until a maximum vertical load of approximately 
30 000 lb was obtained and then slowly unloaded un- 
til the tire lost contact with the surface. During this 
loading process, an x-y plotter was used to monitor 
the resulting tire hysteresis loop as shown in sketch 2. 

30 p 

25 

20 

Vertical 
load,     15 
kips 

10 

f=\ 

—e— Increasing load 
—o- Decreasing load 

1 2 3 
Displacement, w, in. 

Sketch 2.     Static vertical load-deflection curve for Space 
Shuttle nose-gear tire. 

Evaluation of Stiffness Coefficients of 
Two-Dimensional Shell Model 

The cord-rubber composite was treated as a lam- 
inated material. For the purpose of computing stiff- 
ness variations in the meridional direction, the tire 
model was divided into seven regions, as shown in 
figure 4. Thickness of the individual carcass plies was 
measured at the interfaces between the regions and 
these values are given in table 2. A linear variation 
was assumed for the thickness within each region. 
The thickness of the tire tread and sidewall cover- 
ing was computed by subtracting the sum of the 



individual ply thicknesses from the total thickness 
of the carcass at each location. 

The material properties of the different plies were 
obtained with the mechanics of material approach, 
which has been widely applied to rigid composites. 
(See refs. 26 and 27.) The elastic constants of the 
tire constituents used in this study are presented in 
table 3. It was assumed that nylon cords of two 
different diameters were used in the construction of 
the tire: 0.022 in. for the bottom two plies and the 
tread reinforcement in region I, and 0.031 in. for all 
other plies. 

The cord end counts (epi) for individual plies at 
the region interfaces are given in table 4. A linear 
variation was assumed for epi within each region. 
The formulas for evaluating the composite elastic 
coefficients for each ply, from the properties of the 
ply constituents, are given in reference 19. 

The stress-strain relationships of the two- 
dimensional shell were obtained by first transform- 
ing the stiffness of each of the individual layers to 
the global shell coordinates (s and 9) and then inte- 
grating these coefficients through the thickness. The 
cord orientations in the individual plies of each re- 
gion are given in table 5. The following formula was 
used to determine 9^, the angle (in degrees) mea- 
sured from the s-axis to the ö-axis, at the numerical 
quadrature points: 

9 = Max {(54.382 - 3.884£ - 148.96£2)0, 33°} 

(13) 
where £ is the dimensionless coordinate along the tire 
meridian. The resulting shell constitutive relations 
are given in appendix A. The meridional variations 
of the stiffness coefficients are shown in figure 6. 

Analysis of Space Shuttle Nose-Gear Tire 
Under Inflation Pressure Loading 

To access the accuracy of the two-dimensional 
shell model of the Space Shuttle nose-gear tire, the 
deformations produced by uniform inflation pres- 
sure of 300 psi, acting normal to the interior sur- 
face, were calculated using the geometrically nonlin- 
ear shell theory. A strip of 30 finite elements was 
used in modeling the tire cross section (a total of 480 
stress-resultant parameters and 293 nonzero general- 
ized displacement parameters). The measured and 
predicted cross-sectional profiles for the Space Shut- 
tle nose-gear tire are presented in figure 7. The pri- 
mary effect of inflation pressure is to expand the tire 
profile in the cross-sectional regions I to V. The pre- 
dicted inflated profile is in excellent agreement with 

the measured profiles. Additional information on in- 
flation pressure results is presented in reference 19. 

Analysis of Inflated Space Shuttle Nose- 
Gear Tire in Contact With a Flat Plate 

Three different models were used in the analysis 
of the Space Shuttle nose-gear tire in contact with 
a flat plate. These models denoted as model 1, 
model 2, and model 3 are depicted in figure 8. Each 
model employed 360 elements in the region outside 
the contact zone (9 < -0.2TT, 9 > 0.27r). Model 1 
included 180 elements in the contact region of the 
tire (-0.27T < 9 < 0.2vr) for a total of 540 elements. 
Model 2 used a refined mesh within the contact 
region with 360 contact elements for a total of 720 
elements, and model 3 employed a more refined 
mesh in the contact zone with 720 contact elements 
for a total of 1080 elements. These models were 
used to study the convergence characteristics of the 
frictionless tire contact problem. 

The load-deflection characteristics of the inflated 
Space Shuttle nose-gear tire subjected to static verti- 
cal loading against a rigid, flat plate are shown in fig- 
ure 9. The faired load-deflection experimental data 
for the tire during the loading cycle are denoted by 
the solid line in the figure. These results indicate that 
the global response of the tire to this loading condi- 
tion is that of a stiffening spring. The unloading data 
shown in sketch 2 are not reproduced in this figure 
because the tire models presented herein do not ac- 
count for damping effects. Predicted load-deflection 
responses from model 1 are denoted by plus signs and 
results from model 3 are denoted by triangular sym- 
bols. The analytical results from both models are 
in excellent agreement with the experimental data. 
This result suggests that the global response of the 
tire to contact loads will not be strongly influenced 
by the inclusion of friction in the contact algorithm. 
Furthermore, the close agreement between the two 
analytical models suggests that the global response 
of the tire is adequately represented by the coarse- 
mesh model 1. 

Predicted deformed configurations of the inflated 
Space Shuttle nose-gear tire subjected to contact 
loading at increasing vertical loads are shown in 
figure 10. The graphic results show a sequence of 
deformed configurations for the tire as the applied 
deflection is increased from initial contact at no load 
through a vertical deflection of 1.80 in. with a load 
of approximately 24000 lb. The top two rows of 
pictures show the deformation sequence from the 
three-quarter side and three-quarter front views and 
the bottom two rows show the same deformation 

8 



sequence from the full side and front views.   These 
results were generated from model 3 output. 

Predicted growth in tire contact area is presented 
in figure 11. The three views show the extent of 
contact predicted by model 3 for tire deflections of 
0.90 in., 1.5 in., and 1.80 in. and vertical loads 
of approximately 7000 lb, 13000 lb, and 24000 lb, 
respectively. 

Predicted variations in contact pressure distribu- 
tion for the Space Shuttle nose-gear tire are shown 
in figure 12. Analytical results are presented as color 
contour plots to show the predicted distribution of 
tire footprint pressures from model 3 for tire deflec- 
tions ranging from 0.90 in. to 1.80 in. Peak contact 
pressures are predicted to occur in the periphery of 
the contact zone. For the Space Shuttle nose-gear 
tire inflated to 300 psi the peak contact pressure is 
approximately 350 psi. The effect of increasing tire 
deflection, and hence vertical load, is to distribute 
these peak pressures over a larger area; however, the 
magnitude of the peak contact pressure for the 0.90- 
in. deflection case is equivalent to the peak contact 
pressure for the 1.80-in. deflection case. 

Convergence characteristics of contact pressure 
distribution are shown in figure 13. To illustrate 
convergence characteristics of the predicted contact 
pressure distribution, contact pressures along the tire 
meridian at the center of contact (section a-a), cir- 
cumferentially along the tire equator (section b-b), 
and circumferentially along the edge of contact (sec- 
tion c-c) are presented in the figure. The coarse- 
mesh model 1 is shown to predict higher peak contact 
pressures in the periphery of contact than the two 
refined-mesh models along the central tire meridian 
and along the tire equator. Along the circumferen- 
tial edge of contact, the model with the most refined 
mesh was needed to obtain a converged solution. 

One means of showing regions of high strain due 
to loads on a complex structure such as a tire is strain 
energy density. Calculated variations in the strain 
energy density distribution for the Space Shuttle 
nose-gear tire are shown in figure 14 in the form of 
color contour plots. Total strain energy density is 
presented in figure 14(a) and transverse-shear strain 
energy density is presented in figure 14(b). Total 
strain energy density is primarily influenced by the 
inflation pressure load. Since the normal tractions 
associated with contact are compressive, the total 
strain energy density is reduced in the region of 
contact. Total strain energy density is also reduced 
in the lower sidewall area near the bead. Transverse- 
shear strain energy density is maximized in the tire 
sidewall near the tire contact zone and along the 

lower sidewall near the tire bead. In the contact 
region the transverse-shear strain energy represents 
about 25 percent of the total strain energy. 

Analytical results presented in figures 11, 12, 
and 14 indicate that the response characteristics 
of the tire exhibit inversion (polar) symmetry with 
respect to the coordinate center. As indicated in 
reference 7, this symmetry condition can be exploited 
to reduce the computational effort associated with 
tire modeling. 

The influence of the magnitude of the penalty 
parameter on the accuracy of the total strain energy 
and the total contact force is presented in figure 15. 
The strain energy ratio, denoted by the dashed line, 
and the contact force ratio, denoted by the solid line, 
are plotted as a function of the base 10 logarithm of 
the penalty parameter in the figure. Results in the 
figure indicate that total calculated strain energy and 
total contact force are insensitive to variations in the 
penalty parameter over the range of 106 to 101 . 

Concluding Remarks 

A computational procedure is presented for the 
solution of frictionless contact problems of aircraft 
tires. The Space Shuttle nose-gear tire is modeled 
using a two-dimensional laminated anisotropic shell 
theory with the effects of variation in material and 
geometric parameters, transverse-shear deformation, 
and geometric nonlinearities included. The contact 
conditions are incorporated into the formulation by 
using a perturbed Lagrangian approach with the fun- 
damental unknowns consisting of the stress resul- 
tants, the generalized displacements, and the La- 
grange multipliers associated with the contact condi- 
tions. The elemental arrays are obtained by using a 
modified two-field, mixed variational principle. The 
modification consists of augmenting the functional 
of that principle by two terms: the Lagrange multi- 
plier vector associated with nodal contact pressures 
and a regularization term which is quadratic in the 
Lagrange multiplier vector. 

The shape functions used in approximating the 
generalized displacements and the Lagrange multipli- 
ers are selected to be the same and differ from those 
used to approximate the stress resultants. The stress 
resultants and the Lagrange multipliers are allowed 
to be discontinuous at the interelement boundaries. 
The nonlinearities due to both large displacements, 
moderate rotations, and the contact conditions are 
combined into the same iteration loop and are han- 
dled by using the Newton-Raphson iterative scheme. 

Numerical results are presented for the Space 
Shuttle    nose-gear    tire    subjected    to    inflation 



pressure and contact loads against a rigid flat plate. els and the effectiveness of the computational pro- 
The measured and computed inflated profiles of the cedure, which combines both the geometrically non- 
tire are in excellent agreement, and the measured linear terms and the contact conditions in one itera- 
and calculated load deflection curves of the tire for tion loop, 
static vertical loading against a flat plate are also 
in excellent agreement.  The numerical studies have NASA Langley Research Center 
demonstrated the high accuracy of the mixed mod- Hampton, VA 23665-5225 

February 27, 1991 
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Appendix A 
Fundamental Equations of Shell Theory Used in Present Study 

The fundamental equations of the Sanders-Budiansky type shell of revolution used in the present study are 
summarized herein. The effects of laminated, anisotropic material response and transverse-shear deformation 
are included. 

Strain-Displacement Relationships 

*=*"+£+K£-*»H* (A1) 

-=v»+;*•+i+Ki;H _+lt2 (A2) 

2£„ = \a,u + {a. - d-f)«+ (i - ft.) (£ - ift») (A3) 

«. = ft*» <A4> 

KP = —<ps + -öö0e (A5) 
r r 

2es3 = -^ + Ösu; + 0s (A7) 

2eez = -^r + -dew + 4>ö (A8) 
it2      r 

where e5 and eg are the extensional strains in the meridional and circumferential directions; 2esg is the 
extensional shear strain; KS and KQ are the bending strains in the meridional and circumferential directions; 
2KSQ is the twisting strain; 2ess and 2eö3 are the transverse-shear strains; ds = d/ds; dg = d/d6; and <j) is the 
rotation around the normal to the shell, which is given by 

±deu+(da + ?fy\ (A9) 

The nonlinear terms that account for moderate rotations are underlined with dashes in equations (Al) to (A3). 

Constitutive Relations 

The shell is assumed to be made of a laminated, anisotropic, linearly elastic material. Every point of the 
shell is assumed to possess a single plane of elastic symmetry parallel to the middle surface. The relationships 
between the stress resultants and the strain measures of the shell are given by 
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' Ns       > en   ci2    (cie\  /n /l2 Q '   es 

Ne C22     (c26)    /l2 /22 (g) £0 

Ns9 

Ms 

> = 

C66      (/lö) (S) /66 2e,0 

dn ^12 @ K5 

< 
Me Symmetric ^22 (S) Kg 

Ms6 

Qs 

• Qe 

^66 Ks6 

C55     K45J 

C44 

2£S3 

•  2cTö3 

(A10) 

where c^, /y, and d^ (i,j = 1,2,6) are shell stiffness coefficients. The nonorthotropic (anisotropic) terms are 
circled, and dots indicate zero terms. 
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Appendix B 
Formulas for Elemental Arrays   [Q], [R], and {g0} 

The explicit forms of the elemental arrays [Q], [R], and {g0} are given in this appendix. For convenience, 
each array is partitioned into blocks according to contributions from displacement and contact nodes. The 
expressions of the typical partitions are given in table Bl. In table Bl, N* and W are the shape functions for 
the Lagrange multipliers and generalized displacements, m is the number of displacement nodes in the element, 
c is the number of nodal points in contact within the element, and ^ is the element domain. The range of 
the indices i and j is from 1 to c, and the range of the index i' is from 1 to m; < g > is the unit ramp (or 
singularity) function defined as follows: 

< 9 >" = 
(ff>0) 
(fl<0) 

(Bl) 

where g = —g and n = 0 or 1. 

Table Bl. Explicit Form of Typical Partitions 
of the Arrays [Q], [R], and {g0} 

Array 
Number of partitions 

or blocks 
Formula for typical 

partition 

[Q] 

[R] 

{go} 

m x c 

ex c 

c 

j  fiji'w < g >() dÜ 

-  / WW < g >° dÜ 

/ N* <g> dÜ 
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Appendix C 
Transformation of Elemental Arrays From Shell Coordinates to Global Cartesian 
Coordinates 

The transformation of the displacement components from the shell coordinates (a,6,x3) to the global 
Cartesian coordinates (x, y, z) is expressed by the following equation: S 

{X}& = [T]{X}W 

where [T] is a block-diagonal transformation whose submatrix at each node is given by 

(Cl) 

[T](n) 

(5x5) 

es    e0    ea x eg    0 0 
1 0 

<-0 
0 1 

(C2) 

e, and eg are the tangential unit vectors in the s- and 0-directions, respectively; 0 is the null vector; {*}(«) and 

SVhTth f raHZed displacernts in she11 coordinates and global Cartesian coordinates, respectively 
Note that the rotation components 0S and cf>e are not transformed since the outer surface of the tire was chosen 
as the reference surface and, therefore, cßs and fo do not appear in the contact conditions 

The elemental matrices [S] and dM 

coordinates to the global Cartesian coordinates as follows: 

[S] -> [S][T] 

and the external load vector {P} are transformed from the shell 

(C3) 

dM 
dX 

[T]t dM 
dX 

[T] 

{P} - [if {P} 

(C4) 

(C5) 

JATWT 
VT? {GtXJ} and {M[H'X)} are 6Valuated With disPla«™t vector {X} expressed in terms or {A J- at the end ot each iteration cycle. 
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Table 1. Characteristics of Mixed Finite-Element Model 
Used in the Numerical Studies 

Designation 

M9-4 

Number of 
displacement 

nodes 

3x3 

Maximum number 
of Lagrange 
multipliers 

3x3 

Number of 
parameters per 
stress resultant 

2x2 

Number of 
quadrature 

points* 

3x3 

* All elemental arrays are evaluated using Gauss-Legendre quadrature formulas 
except for [Q], [R], and {g0}, which are evaluated using Newton-Cotes formulas. 

Table 2. Variation of Ply Thickness hk/h0 

[h0 = 0.7513 in.] 

Ply number 
(top to bottom) 

hk/h0 for region— 

I II III IV V VI VII 
1 

(tread and sidewall) 
16 

hi = h-Zhk 
k=2 a2 0.0865- 

.0865 
0.0865- 
.0658 

0.0658- 
.0692 

0.0692- 
.0813 

0.0801- 
.0937 

0.0681- 
.1238 

0.0918- 
.1240 

3 0.0865- 
.0865 

0.0865- 
.0658 

0.0658- 
.0692 

0.0692- 
.0813 

0.0801- 
.0937 

0.0681- 
.1238 

0.0918- 
.1240 

4 0.0865- 
.0865 

0.0666- 
.0506 

0.0506- 
.0532 

0.0692- 
.0813 

0.0488- 
.0571 

0.0523- 
.0950 

0.0652- 
.0880 

5 0.0666- 
.0666 

0.0666- 
.0506 

0.0506- 
.0532 

0.0426- 
.0500 

0.0488- 
.0571 

0.0523- 
.0950 

0.0652- 
.0880 

6 0.0666- 
.0666 

0.0666- 
.0506 

0.0506- 
.0532 

0.0426- 
.0500 

0.0488- 
.0571 

0.0523- 
.0950 

"0.2662- 
.3594 

7 0.0666- 
.0666 

0.0666- 
.0506 

0.0506- 
.0532 

0.0426- 
.0500 

0.0488- 
.0571 

0.0523- 
.0950 

0.0652- 
.0880 

8 0.0666- 
.0666 

0.0666- 
.0506 

0.0506- 
.0532 

0.0426- 
.0500 

0.0488- 
.0571 

0.0523- 
.0950 

0.0652- 
.0880 

9 0.0666- 
.0666 

0.0666- 
.0506 

0.0506- 
.0532 

0.0426- 
.0500 

0.0488- 
.0571 

0.0523- 
.0950 

0.0652- 
.0880 

10 0.0666- 
.0666 

0.0466- 
.0354 

0.0354- 
.0373 

0.0426- 
.0500 

0.0488- 
.0571 

0.0523- 
.0950 

0.0652- 
.0880 

11 0.0466- 
.0466 

0.0466- 
.0354 

0.0354- 
.0373 

0.0346- 
.0407 

0.0488- 
.0571 

0.0523- 
.0950 

"0.2662- 
.3594 

12 0.0466- 
.0466 

0.0798- 
.0798 

0.0798- 
.0798 

0.0346- 
.0407 

0.0375- 
.0439 

0.0523- 
.0950 

0.0652- 
.0880 

13 0.0798- 
.0798 

0 0 0.0798- 
.0798 

0.0375- 
.0439 

0.0523- 
.0950 

0.0652- 
.0880 

14 0 0 0 0 0.0798- 
.0798 

0.0366- 
.0666 

0.0466- 
.0629 

15 0 0 0 0 0 0.0366- 
.0666 

0.0466- 
.0629 

16 0 0 0 0 0 0.0798- 
.1464 

0.1464- 
.1597 

a Second layer of region I represents the layer that has the reinforcement (see fig. 4). 
This represents the thickness of the bead wires. 
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Table 3. Values of Elastic Constants of Tire Constituents Used in Present Study 

Tire constituent 
Young's modulus, 

psi 
Shear modulus, 

psi Poisson's ratio 

Rubber 
Nylon cord 

Bead0 

4.5 x 10* 
3.5 x 105 

2.9 x 107 

1.51 x 102 

7.00 x 102 

1.10 x 107 

0.49 
.66 
.30 

a Since the deformations are small in the bead area, it is reasonable to assume 
that the bead wires are isotropic. 

Table 4. Variation of Nylon Cord End Counts in Different Plies Along Meridian 

Ply number 
Cord end count, ends per inch for region— 

(top to bottom) I II III IV V VI VII 

1 Rubber Rubber Rubber Rubber Rubber Rubber Rubber 
(tread and sidewall) 

2 16-16 18-14 14-14 14-14 14-14 14-14 14-14 

3 18-18 18-14 14-14 14-14 14-14 14-14 14-14 
4 18-18 21-20 20-18 18-16 16-16 16-14 14-14 
5 23-21 21-20 20-18 18-16 16-16 16-14 14-14 
6 23-21 21-20 20-18 18-16 16-16 16-14 Bead 

7-9 23-21 21-20 20-18 18-16 16-16 16-14 14-14 

10 23-21 29-26 26-25 18-16 16-16 16-14 14-14 
11 30-29 29-26 26-25 25-24 16-16 16-14 Bead 
12 30-29 Rubber Rubber 25-24 24-22 16-14 14-14 

13 Rubber Rubber 24-22 16-14 14-14 
14 Rubber 22-22 22-22 

15 22-22 22-22 

16 Rubber Rubber 
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Table 5. Variation of Cord Orientation of Individual Plies, 6k, Along Meridian 

Ply number 
0fc, deg, for region— 

(top to bottom) I II III IV V VI VII 
1 Rubber Rubber Rubber Rubber Rubber Rubber Rubber 
2 0-6 0 0 0 0 0 0 
3 0 -0 -0 -0 -0 -0 -0 
4 -0 0 0 -0 -0 -0 0 
5 0 -0 -0 0 0 0 -0 
6 -0 0 0 -0 0 -0 Bead 
7 0 -0 -0 0 -0 0 -0 
8 -e 0 0 -0 0 -0 0 
9 e -0 -0 0 -0 0 -0 

10 -6 0 + 6 0 + 6 -0 0 -0 0 
11 0 + 6 -0-6 -0-6 0 + 6 -0 0 Bead 
12 -0-6 Rubber Rubber -0-6 0 + 6 0 0 
13 Rubber Rubber -0-6 -0 -0 
14 Rubber 0 + 6 0 + 6 
15 -0-6 -0-6 
16 Rubber Rubber 
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x3.P 

Generalized displacements Stress resultants 

Figure 1.    Two-dimensional model of the tire and sign convention for the external loading, generalized 
displacements, and stress resultants. 
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-Rigid plate 

Original 
configuration 

Deformed 
configuration 

Contact region and 
pressure distrubition 

Figure 2. Characteristics of frictionless contact of a shell pressed against a rigid plate. 

t 

bj =15.1734 in. 

b2 =4.12 in. 

Reference 
surface 

At ® At© 
s=£ = 0 s = 9.76 in. 
h0 = 0.75 in. 4=0.5           ^ 

X ■*- - 

Af^® 

Boundary conditions: 

At % = 0.5 
u = v = w = 0 
<t>s=<t>e=s° 

At £=0 
Symmetry condition: 
u = v= ^=^=0 

Figure 3. Geometric characteristics of Space Shuttle nose-gear tire. 
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0.1102 

Figure 4. Cross section of Space Shuttle nose-gear tire showing seven model regions. 
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Normalized 
parameter 

K1/K1,0 

Figure 5. Meridional variation of geometric parameters of two-dimensional shell model of Space Shuttle 
nose-gear tire. Reference surface chosen to be outer surface. r0 = 15.1737 in.; «2,0 = 0.0659 in-1; 
«I o = 0.1091 in-1. 
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(a) Stiffness coefficients associated with uncoupled (orthotropic) response. 

Figure 6. Meridional variation of stiffness coefficients of two-dimensional shell model of Space Shuttle nose-gear 
tire. ETo = 1160.3 psi; h0 = 0.7513 in. 
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Figure 7. Inflated and uninflated profiles of Space Shuttle nose-gear tire. 
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0 = 0 

M9-4 finite element 
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9 <-0.271, 9 > 0.271 
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720(30x24) 

Model 3 
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360 (30 x 12) 
1080 (30 x 36) 

Figure 8. Finite-element models of Space Shuttle nose-gear tire used in present study. 
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Figure 9. Static vertical load-deflection characteristics of Space Shuttle nose-gear tire. 
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w = 0 w = 0.90 in. w = 1.50 in. w= 1.80 in. 
Figure 10.   Deformed configurations of Space Shuttle nose-gear tire.   The tire is subjected to uniform 

inflation pressure p0 = 300 psi and is pressed against a rigid pavement. 
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Figure 11.   Variation of footprint areas with applied displacements.   The tire is subjected to uniform 
inflation pressure p0 — 300 psi and is pressed against a rigid pavement. 
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Total strain        .01 
energy ratio, 

U-U_ 

u 

Contact force ratio, 
F -F c, conv        c 

c, conv 

Figure 15. Effect of magnitude of penalty parameter on the accuracy of the total strain energy and the contact 
force. p0 = 300 psi. 
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